Using Syntactic Features for Phishing Detection
نویسندگان
چکیده
This paper reports on the comparison of the subject and object of verbs in their usage between phishing emails and legitimate emails. The purpose of this research is to explore whether the syntactic structures and subjects and objects of verbs can be distinguishable features for phishing detection. To achieve the objective, we have conducted two series of experiments: the syntactic similarity for sentences, and the subject and object of verb comparison. The results of the experiments indicated that both features can be used for some verbs, but more work has to be done for others. Keywords—phishing detection; syntactic similarity; parse tree path.
منابع مشابه
Phishing website detection using weighted feature line embedding
The aim of phishing is tracing the users' s private information without their permission by designing a new website which mimics the trusted website. The specialists of information technology do not agree on a unique definition for the discriminative features that characterizes the phishing websites. Therefore, the number of reliable training samples in phishing detection problems is limited. M...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملPoster: Syntactic Element Similarity for Phishing Detection
This poster present the result of the comparison of the subject and object of verbs in their usage between phishing emails and legitimate emails. This research aims to investigate whether subjects and objects of verbs can be distinguishable features for phishing detection. This poster also reports the same comparison between old and up-to-date phishing emails to explore if patterns in phishing ...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملPhishing Website Detection based on Supervised Machine Learning with Wrapper Features Selection
The problem of Web phishing attacks has grown considerably in recent years and phishing is considered as one of the most dangerous Web crimes, which may cause tremendous and negative effects on online business. In a Web phishing attack, the phisher creates a forged or phishing website to deceive Web users in order to obtain their sensitive financial and personal information. Several conventiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1506.00037 شماره
صفحات -
تاریخ انتشار 2015